㈠ 數學手抄報簡單又漂亮
數學手抄報簡單又漂亮
如何製作一張精美的數學手抄報呢?我為大家分享的數學手抄報簡單又漂亮,希望可以幫到大家!
數學手抄報圖片【簡單又漂亮】
數學手抄報圖片1
一、預習的方法
預習是上課前對即將要上的數學內容進行閱讀,了解其梗概,做到心中有數,以便掌握聽課的主動權。由於預習是學生獨立學習的常嘗試,對學習內容是否正確理解,能否把握其重點,關鍵,洞察到隱含的思想方法等,都能在聽課中得到檢驗,加強或矯正,有利於提高他們的學習能力和養成自學的習慣,所以它是數學學習中的重要一環。
數學具有很強的邏輯性和連貫性,新知識往往是建立在舊知識的基礎上。因此,預習時就要找出學習新知識所需的知識,並進行回憶或重新溫習,一旦發現舊知識掌握得不好,甚至不理解時,就要及時採取措施補上,克服因沒有掌握好或遺忘帶來的學習障礙,為順利學習新內容創造條件。否則由於學生掌握舊知識存在的缺陷,妨礙著有意義學習的進行,從而造成學習的困難。
預習的方法,除了回憶或溫習學習新內容所需的舊知識(或預備知識)外,還應該了解其基本內容,也就是知道要講些什麼,要解決什麼問題,採取什麼方法,重點關鍵在哪裡等。預習時,一般採用邊閱讀,邊思考,邊書寫的方式,把內容的要點,層次,聯系劃出來或打上記號,寫下自己的看法或弄不懂的地方與問題,最後確定聽課時要解決的主要問題或打算,以提高聽課效率。在時間的安排上,預習一般放在復習和作業之後進行,即做完功課後,把下次課要學的內容看一遍,其要求則根據當時具體情況靈活掌握。如果時間允許,可以多思考一些問題,鑽研得深入一些,甚至可做做練習題或習題;時間不允許,可以少思考一些問題,留給聽課去解決的問題就多一些,不必強求一律。
數學手抄報圖片2
二、聽課的方法
在學校教育的條件下,聽課是學生學習數學的主要形式。在教師的指導,啟發,幫助下學習,就可以少走彎路,減少困難,能在較短的時間內獲得大量系統的.數學知識,否則事倍功半,難以提高效率。所以聽課是學好數學的關鍵。
聽課的方法,學生除在預習中明確任務,做到有針對性地解決符合自己實際的問題外,還要集中注意力,把自己的思維活動緊緊跟上教師的講課,開動腦筋,思考教師怎樣提出問題,分析問題,解決問題,特別要從中學習數學思維的方法,如觀察,比較,分析,綜合,歸納,演繹,一般化,特殊化等,就是如何運用公式,定理,其中也隱含著思想方法。
在聽課時,一方面理解教師講的內容,思考或回答教師提出的問題,另一方面還要獨立思考,鑒別哪些知識已經聽懂,哪些還有疑問或有新的問題,並勇於提出自己的看法。如果課內一時不可能解決,就應把疑問或問題記下,留待課後自己去思考或請教老師,並繼續專心聽老師講課,切勿因一處沒有聽懂,思維就停留在這里,而影響後面的聽課。一般,聽課時要把老師講課的要點,補充的內容與方法記下(也就是記筆記),以備復習之用。
數學手抄報圖片3
三、復習的方法
復習就是把學過的數學知識再進行學習,以達到深入理解,融會貫通,精練概括,牢固掌握的目的。復習應與聽課緊密銜接,邊閱讀教材邊回憶聽課內容或查看課堂筆記,及時解決存在的知識缺陷與疑問。對學習的內容務求弄懂,切實理解掌握。如果有的問題經過較長時間的思索,還得不到解決,則可與同學討論或請老師解決。
復習還要在理解教材的基礎上,溝通知識間的內在聯系,找出其重點,關鍵,然後提煉概括,組成一個知識系統,從而形成或發展擴大數學認知結構。
復習是對知識進行深化,精練和概括的過程,它需要通過手和腦積極主動地開展活動才能達到,因此,在這個過程中,提供了發展和提高能力的極好機會。數學的復習,不能僅停留在把已學的知識溫習記憶一遍的要求上,而要去努力思考新知識是怎樣產生的,是如何展開或得到證明的,其實質是什麼,怎樣應用它等。在復習中,不斷對知識本身,或從數學思想方法的角度進行提高與精練,是十分有利於能力的發展與提高的。
四、作業的方法
數學學習往往是通過做作業,以達到對知識的鞏固,加深理解和學會運用,從而形成技能技巧,以及發展智力與數學能力。由於作業是在復習的基礎上獨立完成的,能檢查出對所學數學知識的掌握程度,能考察出能力水平,所以它對於發現存在的問題,及時採取措施加以解決,有著重要的作用。一般,當做作業感到困難,或做錯的題目較多時,往往標志著知識的理解與掌握上存在缺陷或問題,應引起警覺,需及早查明原因,予以解決。
通常,數學作業表現為解題,解題要運用所學的知識和方法。因此,在做作業前許要先復習,在基本理解與掌握所學教材的基礎上進行,否則事倍功半,花費了時間,得不到應有的效果。
解題,要按一定的程序,步驟進行。首先,要弄清題意,認真讀題,仔細理解題意。如哪些是已知的數據,條件,哪些是未知數,結論,題中涉及到哪些運算,它們相互之間是怎樣聯系的,能否用圖表示出來等,要詳加推敲,徹底弄清。其次,在弄清題意的基礎上,探索解題的途徑,找出已知與未知,條件與結論之間的聯系。回憶與之有關的知識和方法,學過的例題,解過的題目等,並從形式到內容,從已知數,條件到未知數,結論,考慮能否利用它們的結果或方法,可否引進適當輔助元素後加以利用;是否能找出與該題有關的一個特殊問題或一個一般問題或一個類似問題,考察解決它們對當前問題有什麼啟發;能否把條件分開,一部分一部分加以考察或變更,再重新組合,以達到所求結果等等。這就是說,在探索解題過程中,需要運用聯想,比較,引入輔助元素,類比,特殊化,一般化,分析,綜合等一系列方法,並從解題中學會這一系列探索的方法。在探索解題方法中,如何靈活運用知識和方法具有重要意義,也是培養能力的一個極好機會。第三,根據探索得到的解題方案,按照所要求的書寫格式和規范,把解題過程敘述出來,並力求簡單,明白,完整。最後,還要對解題進行回顧,檢查解答是否正確無誤,每步推理或運算是否立論有據,答案是否詳盡無遺;思考一下解題方法可否改進或有否新的解法,該題結果能否推廣等,並小結一下解題的經驗,進而發展與完善解題的思想方法,總結出帶有規律性的東西來。
㈡ 數學思維導圖,怎麼畫
數學思維導圖的構建模式,都是先確定一個中心主題,引出子主題,對子主題再分層次即可。具體操作步驟如下。
1、用最簡潔的語言確定要畫的數學主題。以「角的度量」為例。如下圖所示。
注意事項:
上述思維導圖里,由角引出了射線的定義角和射線之間,畫一條關系線,方便我們把知識點串聯起來即可。
㈢ 數學手抄報圖片簡單又漂亮 全國最漂亮數學手抄報圖片
導讀:數學可以說是這世界上最難攻克的問題,想必很多人的學生生涯都有體會過上數學課打瞌睡的時候吧。數學學不懂那就是天文數字,學懂了那就是加減乘除,為了讓大家更喜愛數學,一起去繪制關於數學的手抄報吧,那麼數學手抄報圖片簡單又漂亮的去哪找呢?以下是我帶來的全國最漂亮數學手抄報圖片,快點來看看吧。
數學手抄報圖片簡單又漂亮 全國最漂亮數學手抄報圖片
數學是什麼
數學(mathematics或maths,其英文來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
學數學的好處
1、崇拜與尊重
一個據說難以被證偽的觀點:認真學習的過程本身就值得被人尊重。而尊重需求位於馬斯洛需求金字塔第二梯隊,可見認真學習是每個人都應該追求的高層次需求。
同時基於經驗證據,數學成績好的同學也更容易受到身邊同學的崇拜和追捧。
2、非線性思維能力
高等數學最重要的一個特徵就是高度抽象化。一道問題可以沒有具體情境,沒有數字,甚至沒有文字,完全由字母構成題干。
這鍛煉的是學生尋求解決問題突破口的能力。基於公理、定理和經驗,尋找題目中可能出現的漏洞,作為進一步推導的前提。
3、邏輯思維能力
有了突破口,就是沿著自己給出的前提和假設,一步步地推導。當然,如何前提和假設是錯的,那麼計算出來的結果也將是錯的,但是嚴格按照數學推斷能保證過程的條理性和結果的邏輯性。
數學家的故事
伽利略質疑權威
伽利略17歲那年,考進了比薩大學醫科專業。
有一次上課,比羅教授講胚胎學。他講道:「母親生男孩還是生女孩,是由父親的強弱決定的。父親身體強壯,母親就生男孩;父親身體衰弱,母親就生女孩。」
比羅教授的話音剛落,伽利略就舉手說道:「老師,我有疑問。我的鄰居,男的身體非常強壯,可他的妻子一連生了5個女兒。這與老師講的正好相反,這該怎麼解釋?」
「我是根據古希臘著名學者亞里士多德的觀點講的,不會錯!」比羅教授想壓服他。
伽利略繼續說:「難道亞里士多德講的不符合事實,也要硬說是對的嗎?科學一定要與事實符合,否則就不是真正的科學。」比羅教授被問倒了,下不了台。
後來,伽利略果然受到了校方的批評,但是,他勇於堅持、好學善問、追求真理的精神卻絲毫沒有改變。正因為這樣,他才最終成為一代科學巨匠。
陳景潤攻克歌德巴赫猜想
陳景潤一個家喻戶曉的數學家,在攻克歌德巴赫猜想方面作出了重大貢獻,創立了著名的「陳氏定理」,所以有許多人親切地稱他為「數學王子」。但有誰會想到,他的成就源於一個故事。
1937年,勤奮的陳景潤考上了福州英華書院,此時正值抗日戰爭時期,清華大學航空工程系主任留英博士沈元教授回福建奔喪,不想因戰事被滯留家鄉。幾所大學得知消息,都想邀請沈教授前進去講學,他謝絕了邀請。由於他是英華的校友,為了報達母校,他來到了這所中學為同學們講授數學課。
一天,沈元老師在數學課上給大家講了一故事:「200年前有個法國人發現了一個有趣的現象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每個大於4的偶數都可以表示為兩個奇數之和。因為這個結論沒有得到證明,所以還是一個猜想。大數學歐拉說過:雖然我不能證明它,但是我確信這個結論是正確的。
它像一個美麗的光環,在我們不遠的前方閃耀著眩目的光輝。……」陳景潤瞪著眼睛,聽得入神。
㈣ 數學思維導圖怎麼畫
對於數學思維導圖怎麼畫,這個問題呢,其實怎麼畫思維導圖基本都是一個套路,新建一個中心主題,確定子主題,再次對子主題分層次,基本上畫思維導圖並沒有什麼難度,除了格式細節的考究。
討論到這個主題,我覺得最重要的就是解決如何順著思維導圖的結構來把數學知識點梳理透徹,這才是重中之重。否則思維導圖只是一個空殼,並起不了任何的作用。
我們以一個知識點(數學實例:實數)來舉例,否則有點跟大白話一樣。
1.確定中心主題:即我們想要梳理的數學只是主題。
2.我們先不看圖,自己試著用腦瓜子想,先把這些問題想明白了,再操作思維導圖。想清楚實數分為哪幾類?即包括什麼?
實數分為有理數和無理數
大致製作一個數學的思維導圖也就是這樣,主要是數學的知識點要梳理清楚,一般的數學課本都會有概念性的分析,按照那個歸類即可。如何學會畫數學思維導圖,技巧佔小半,頭腦佔大半,重在概念性的梳理得當,知識點清楚了,數學思維導圖也就不難畫了,哈哈~~
㈤ 數學手抄報圖片簡單又漂亮
數學手抄報圖片簡單又漂亮
數學手抄報圖片簡單又漂亮,讓孩子在這種活動中回歸書本,家長要讓孩子獨立完成手抄報,手抄報的顏色多姿多彩,數學手抄報也要顯現出不一樣的創意,下面我們一起欣賞數學手抄報圖片簡單又漂亮。
數學手抄報圖片簡單又漂亮1
趣味數學知識
在我們的概念中,「1「是一個最小的數字,它是整數數字的開始之數,是萬數之首,是的,「1」是萬數之首,它的地位也是最特殊的,下面,就和我一起認識這個神奇的數字吧。
一、最小的數字。
古老而龐大的自然數家族,是由全體自然數1、2、3、4、5、6、7、8、9、10……集合在一起組成的。其中最小的是「1」,找不到最大的。如果你有興趣的話,可以找一找。
二、沒有最大的自然數。
也許你認為可以找到一個最大的自然數(n),但是,你立刻就會發現另一個自然數(n+1),它大於n。這就說明在自然數家族中永遠找不到最大的自然數。
三、「1」確實是自然數家族中最小的。
自然數是無限的,而「1」是自然數中最小的。有人提出異議,不同意「1」是最小的自然數,說「0」比「1」小,「0」應該是最小的自然數。這是不對的,因為自然數指的.是正整數,「0」是唯一的非正非負的整數,因而「0」不屬於自然數家族。「1」確實是自然數家族中最小的。
可別小看了這個最小的「1」,它是自然數的單位,是自然數中的第一代,人類最先認識的是「1」,有了「1」,才能得到1、2、3、4……
給你講了萬數之首「1」的特殊地位,所以,你千萬別小看了它哦。
數學手抄報圖片簡單又漂亮2
數學家簡介
C.F. Gauss是 德國著名數學家、物理學家、天文學家、大地測量學家。他有數學王子的美譽,並被譽為歷史上最偉大的數學家之一,和阿基米德、牛頓、歐拉同享盛名。
華羅庚(1910.11.12—1985.6.12.),世界著名數學家,中國解析數論、矩陣幾何學、典型群、自安函數論等多方面研究的創始人和開拓者。國際上以華氏命名的數學科研成果就有「華氏定理」、「懷依—華不等式」、「華氏不等式」、「普勞威爾—加當華定理」、「華氏運算元」、「華—王方法」等。
陳景潤(1933年5月22日~1996年3月19日),漢族,福建福州人。中國著名數學家,廈門大學數學系畢業。1966年發表《表達偶數為一個素數及一個不超過兩個素數的乘積之和》(簡稱「1+2」),成為哥德巴赫猜想研究上的里程碑。而他所發表的成果也被稱之為陳氏定理。()這項工作還使他與王元、潘承洞在1978年共同獲得中國自然科學獎一等獎。1999年,中國發表紀念陳景潤的郵票。紫金山天文台將一顆行星命名為「陳景潤星」,以此紀念。另有相關影視作品以陳景潤為名。
華羅庚(1910年11月12日—1985年6月12日),漢族,江蘇金壇金城鎮人,是世界著名數學家,是中國解析數論、矩陣幾何學、典型群、自安函數論等多方面研究的創始人和開拓者。在國際上以華氏命名的數學科研成果就有「華氏定理」、「懷依—華不等式」、「華氏不等式」、「普勞威爾—加當華定理」、「華氏運算元」、「華—王方法」等。他為中國數學的發展作出了舉世矚目的貢獻。美國著名數學家貝特曼著文稱:「華羅庚是中國的愛因斯坦,足夠成為全世界所有著名科學院院士」。被列為芝加哥科學技術博物館中當今世界88位數學偉人之一。
㈥ 三年級下冊數學手抄報圖片間單的字盡量少一些
三年級下冊數學手抄報圖片簡單的字盡量少一些
㈦ 簡單的數學好玩手抄報有哪些
簡單好看的數學手抄報圖片-有趣的數學
㈧ 數學手抄報怎麼畫
先畫出報頭文字,接著畫幾個不同形狀的小邊框,補充一些小細節,給報頭塗上顏色,草地塗上綠色,給邊框塗上各種顏色,最後畫上文字欄,簡單的手抄報就畫好啦,具體操作步驟如下:
1、先畫出報頭文字,然後在左邊畫一個玩具熊的邊框,邊框的右下角畫兩本書點綴一下。
關於數學手抄報的一些小技巧
1、內容方面
內容可以分為概述,具體內容,圖片,花邊設計按需要改進。
手抄報要細致,可以用熒光筆,細的那種,和中性筆一樣細的那種,大標題則可用粗一點的,顏色的選取要大膽,顯眼,如果喜歡黑色背景的話,可以直接買黑色的卡紙,大小顏色都不錯。厚度也不錯,比A4那類的列印紙要好點。
2、創意方面
要有創意,可分為這樣的幾個模塊,首先寫學習數學的精神性東西,比如態度、方法等,然後寫具體的東西,數學的知識,還可以是一套題,說出自己的方法和感觸。
㈨ 生活中關於數學的圖片
生活中的數學圖案
生活中的圖案很多,比如軸對稱,中心對稱的。本章會從軸對稱和中心對稱兩方面來介紹。
生活中的軸對稱
我們生活在一個充滿對稱的世界之中,對稱給人以平衡與和諧的美感。請欣賞生活中的軸對稱圖片。
㈩ 簡單又漂亮的數學手抄報圖片
簡單又漂亮的數學手抄報圖片
數學的知識點是非常之多的,我們要不斷學習,數學手抄報也是學習數學的一種方式。下面是我為大家精心整理的數學手抄報,希望對你有幫助!
數學手抄報圖片
數學手抄報資料:現代數學教育
現代數學時期是指由19世紀20年代至今,這一時期數學主要研究的是最一般的數量關系和空間形式,數和量僅僅是它的極特殊的情形,通常的一維、二維、三維空間的幾何形象也僅僅是特殊情形。抽象代數、拓撲學、泛函分析是整個現代數學科學的主體部分。它們是大學數學專業的課程,非數學專業也要具備其中某些知識。變數數學時期新興起的許多學科,蓬勃地向前發展,內容和方法不斷地充實、擴大和深入。
18、19世紀之交,數學已經達到豐沛茂密的境地,似乎數學的寶藏已經挖掘殆盡,再沒有多大的發展餘地了。然而,這只是暴風雨前夕的寧靜。19世紀20年代,數學革命的狂飆終於來臨了,數學開始了一連串本質的變化,從此數學又邁入了一個新的時期——現代數學時期。
19世紀前半葉,數學上出現兩項革命性的發現——非歐幾何與不可交換代數。
大約在1826年,人們發現了與通常的歐幾里得幾何不同的、但也是正確的幾何——非歐幾何。這是由羅巴契夫斯基和里耶首先提出的。非歐幾何的出現,改變了人們認為歐氏幾何唯一地存在是天經地義的觀點。它的革命思想不僅為新幾何學開辟了道路,而且是20世紀相對論產生的前奏和准備。
後來證明,非歐幾何所導致的思想解放對現代數學和現代科學有著極為重要的意義,因為人類終於開始突破感官的'局限而深入到自然的更深刻的本質。從這個意義上說,為確立和發展非歐幾何貢獻了一生的羅巴契夫斯基不愧為現代科學的先驅者。
1854年,黎曼推廣了空間的概念,開創了幾何學一片更廣闊的領域——黎曼幾何學。非歐幾何學的發現還促進了公理方法的深入探討,研究可以作為基礎的概念和原則,分析公理的完全性、相容性和獨立性等問題。1899年,希爾伯特對此作了重大貢獻。
在1843年,哈密頓發現了一種乘法交換律不成立的代數——四元數代數。不可交換代數的出現,改變了人們認為存在與一般的算術代數不同的代數是不可思議的觀點。它的革命思想打開了近代代數的大門。
另一方面,由於一元方程根式求解條件的探究,引進了群的概念。19世紀20~30年代。阿貝爾和伽羅華開創了近代代數學的研究。近代代數是相對古典代數來說的,古典代數的內容是以討論方程的解法為中心的。群論之後,多種代數系統(環、域、格、布爾代數、線性空間等)被建立。這時,代數學的研究對象擴大為向量、矩陣,等等,並漸漸轉向代數系統結構本身的研究。
上述兩大事件和它們引起的發展,被稱為幾何學的解放和代數學的解放。
19世紀還發生了第三個有深遠意義的數學事件:分析的算術化。1874年威爾斯特拉斯提出了一個引人注目的例子,要求人們對分析基礎作更深刻的理解。他提出了被稱為「分析的算術化」的著名設想。實數系本身最先應該嚴格化,然後分析的所有概念應該由此數系導出。他和後繼者們使這個設想基本上得以實現,使今天的全部分析可以從表明實數系特徵的一個公設集中邏輯地推導出來。
現代數學家們的研究,遠遠超出了把實數系作為分析基礎的設想。歐幾里得幾何通過其分析的解釋,也可以放在實數系中;如果歐氏幾何是相容的,則幾何的多數分支是相容的。實數系(或某部分)可以用來解群代數的眾多分支;可使大量的代數相容性依賴於實數系的相容性。事實上,可以說:如果實數系是相容的,則現存的全部數學也是相容的。
19世紀後期,由於狄德金、康托和皮亞諾的工作,這些數學基礎已經建立在更簡單、更基礎的自然數系之上。即他們證明了實數系(由此導出多種數學)能從確立自然數系的公設集中導出。20世紀初期,證明了自然數可用集合論概念來定義。因而各種數學能以集合論為基礎來講述。
拓撲學開始是幾何學的一個分支,但是直到20世紀的第二個1/4世紀,它才得到了推廣。拓撲學可以粗略地定義為對於連續性的數學研究。科學家們認識到:任何事物的集合,不管是點的集合、數的集合、代數實體的集合、函數的集合或非數學對象的集合,都能在某種意義上構成拓撲空間。拓撲學的概念和理論,已經成功地應用於電磁學和物理學的研究。
;