❶ 數學符號都有哪些
數學符號有很多,主要常用的是以下五個類型,在此列舉幾個:
應用數學符號
CRng 交換環范疇
R-mod 環R的左模範疇
Field 域范疇
Poset 偏序集范疇
來歷
加號,減號
「+」號是由拉丁文「et」(「和」的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文「plu」(加的意思)的第一個字母表示加,草為「μ」最後都變成了「+」號。「-」號是從拉丁文「minus」(「減」的意思)演變來的,簡寫m,再省略掉字母,就成了「-」。
也有人說,賣酒的商人用「-」表示酒桶里的酒賣了多少。以後,當把新酒灌入大桶的時候,就在「-」上加一豎,意思是把原線條勾銷,這樣就成了個「+」號。
到了十五世紀,德國數學家魏德美正式確定:「+」用作加號,「-」用作減號。
乘號,除號
乘號曾經用過十幾種,現在通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:「×」號象拉丁字母「X」,加以反對,而贊成用「·」號。他自己還提出用「п」表示相乘。可是這個符號現在應用到集合論中去。
到了十八世紀,美國數學家歐德萊確定,把「×」作為乘號。他認為「×」是「+」斜起來寫,是另一種表示增加的符號。
「÷」最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用「:」表示除或比,另外有人用「-」(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將「÷」作為除號。
平方根號曾經用拉丁文「Radix」(根)的首尾兩個字母合並起來表示,十七世紀初葉,法國數學家笛卡兒在他的《幾何學》中,第一次用「√」表示根號。「√」是由拉丁字線「r」變,「——」是括線。
等於號,不等於號
十六世紀法國數學家維葉特用「=」表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號「=」就從1540年開始使用起來。
1591年,法國數學家韋達在菱形中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了「=」號,他還在幾何學中用「∽」表示相似,用「≌」表示全等。
大於號「>」和小於號「<」,是1631年英國著名代數學家赫銳奧特創用。至於「≯」、「≮」、「≠」這三個符號的出現,是很晚很晚的事了。
括弧
大括弧「{}」和中括弧「[]」是代數創始人之一魏治德創造的。
❷ 數學所有符號解釋大全
(1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏。
(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。
(3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。
(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」
(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」
(6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等。
符號 意義
∞ 無窮大
PI 圓周率
|x| 函數的絕對值
∪ 集合並
∩ 集合交
≥ 大於等於
≤ 小於等於
≡ 恆等於或同餘
ln(x) 以e為底的對數
lg(x) 以10為底的對數
floor(x) 上取整函數
ceil(x) 下取整函數
x mod y 求余數
小數部分 x - floor(x)
∫f(x)δx 不定積分
∫[a:b]f(x)δx a到b的定積分
P為真等於1否則等於0
∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求極限
f(z) f關於z的m階導函數
C(n:m) 組合數,n中取m
P(n:m) 排列數
m|n m整除n
m⊥n m與n互質
a ∈ A a屬於集合A
#A 集合A中的元素個數
❸ 數學符號,所有的
1、幾何符號
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2、代數符號
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫),曲線積分(∮)等。
4、集合符號
∪ ∩ ∈
5、特殊符號
∑ π(圓周率)
6、推理符號
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指數0123:o123
7、數量符號
如:i,2+i,a,x,自然對數底e,圓周率π。
8、關系符號
如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」),「≤」是小於或等於符號(也可寫作「≯」),。「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「??」是「包含」符號等。
9、結合符號
如小括弧「()」中括弧「[]」,大括弧「{}」橫線「—」
10、性質符號
如正號「+」,負號「-」,絕對值符號「| |」正負號「±」
11、省略符號
如三角形(△),直角三角形(Rt△),正弦(sin),餘弦(cos),x的函數(f(x)),極限(lim),角(∠),
∵因為,(一個腳站著的,站不住)
∴所以,(兩個腳站著的,能站住) 總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(C(r)(n) ),冪(A,Ac,Aq,x^n)等。
12、排列組合符號
C-組合數
A-排列數
N-元素的總個數
R-參與選擇的元素個數
!-階乘 ,如5!=5×4×3×2×1=120
C-Combination- 組合
A-Arrangement-排列
❹ 數學符號,怎麼讀。(看圖片紅圈裡的)
希臘字母 Ε(大寫) ε(小寫) 希臘語發音:ἔψιλόν 英語發音:Epsilon漢語諧音接近:埃普西隆
❺ 數學符號大全。
符號(Symbol)意義(Meaning)
等於 is equal to
不等於 is not equal to
約等於 approximately equal to
小於 is less than
大於 is greater than
平行 is parallel to
平行且相等
垂直
大於或等於 is greater than or equal to
小於或等於 is less than or equal to
恆等於或同餘
圓周率 約為3.1415926536Ratio of circumference to diameter; Pi
自然常數 約為 2.7182818285Natural constant
絕對值或(復數的)模absolute value of X
相似 is similar to
≌全等 is equal to(especially for geometric figure)
遠大於
遠小於
並集
交集
包含於
屬於
⊙ 圓
除,求商值,部分編程語言中理解為整除
, , , … 角度;系數
∞無窮大(包括正無窮大 與負無窮大 )
以e為底的對數(自然對數)
以10為底的對數(常用對數)
lbx 以2為底的對數
求極限
或[x],亦可寫為 下取整函數(直譯為「地板函數」),又稱高斯函數
亦可寫為 上取整函數(直譯為「天花板函數」)
模,求余數
或{x} 表示x的小數部分
, 函數y=f(x)的微分(或線性主部)
不定積分,函數f的全體原函數
平面二維 紊流模型不同壁函數的對比及研究
函數f(x)在區間(a,b)上的定積分
表示i從m到n逐一遞增對連加求和(sigma:∑ )
表示i從m到n逐一遞增對連乘求積 (pi:Π)
❻ 幫我打出圖片中的七個數學符號,謝謝~ PS:數學符號的右下方的小字母也要打出來
這些都是電腦里的「特殊符號」,下腳標是在「格式」里設置。
❼ 所有數學符號
數學符號大全
1 幾何符號
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2 代數符號
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3運算符號
× ÷ √ ±
4集合符號
∪ ∩ ∈
5特殊符號
∑ π(圓周率)
6推理符號
|a| ⊥ ∽ △ ∠ ∩
∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖
↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤
⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ
Χ Ψ Ω
α β γ δ ε ζ η θ ι
κ λ μ ν
ξ ο π ρ σ τ υ φ
χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ?
⊙ ⊥
⊿ ⌒ ℃
指數0123:º¹²³
符號 意義
∞ 無窮大
PI 圓周率
|x| 函數的絕對值
∪ 集合並
∩ 集合交
≥ 大於等於
≤ 小於等於
≡ 恆等於或同餘
ln(x) 自然對數
lg(x) 以2為底的對數
log(x) 常用對數
floor(x) 上取整函數
ceil(x) 下取整函數
x mod y 求余數
{x} 小數部分 x - floor(x)
∫f(x)δx 不定積分
∫[a:b]f(x)δx a到b的定積分
[P] P為真等於1否則等於0
∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況
如:∑[n is
prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求極限
f(z) f關於z的m階導函數
C(n:m) 組合數,n中取m
P(n:m) 排列數
m|n m整除n
m⊥n m與n互質
a ∈
A a屬於集合A
#A 集合A中的元素個數
❽ 數學題怎麼打字
在輸入法那個圖標上右擊,選擇小鍵盤-數學符號,就可以了
不過我還是覺得直接拿手機拍照然後上傳圖片比較省事
❾ 全部數學符號
數學符號一般有以下幾種: (1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏。 (2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。 (3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。 (4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」 (5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」 (6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等。 符號 意義 ∞ 無窮大 PI 圓周率 |x| 函數的絕對值 ∪ 集合並 ∩ 集合交 ≥ 大於等於 ≤ 小於等於 ≡ 恆等於或同餘 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 {x} 小數部分 x - floor(x) ∫f(x)δx 不定積分 ∫[a:b]f(x)δx a到b的定積分 P為真等於1否則等於0 ∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求極限 f(z) f關於z的m階導函數 C(n:m) 組合數,n中取m P(n:m) 排列數 m|n m整除n m⊥n m與n互質 a∈ A a屬於集合A #A 集合A中的元素個數