当前位置:首页 » 衣服发型 » 数学手抄报模板图片简单空白
扩展阅读
女生和渣男搞笑图片 2023-08-31 22:07:09
嘻嘻长什么样图片 2023-08-31 22:06:10

数学手抄报模板图片简单空白

发布时间: 2022-08-12 12:28:15

Ⅰ 数学手抄报大全

格式:
一般是中间上方写标题,或者左侧写大标题,如果喜欢一些张扬个性的呢,可以从中间倾斜横跨整个纸张。
内容可以分为概述,具体内容,图片,花边设计
按需要改进。
手抄报要细致,可以用荧光笔,细的那种,和中性笔一样细的那种,大标题则可用粗一点的,颜色的选取要大胆,显眼,如果喜欢黑色背景的话,可以直接买黑色的卡纸,大小颜色都不错。厚度也不错。比A4那类的打印纸要好点。
要有创意,不拘一格
内容:学习内容咯,分为这样的几个模块,首先写学习数学的精神性东西,比如态度咯,方法咯,然后写具体的东西,数学的知识,还可以一套题哦,说出自己的方法和感触哦,在写点继续性的东东,要好好学习喽~呵呵,祝你学习进步咯~
笔:可以有荧光笔,可以有蜡笔,彩笔,或者用改正液往黑色背景上写咯。

数学趣味小故事:
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

Ⅱ 数学手抄报图片

500x333 94k jpg
三 1 的精美数学手抄报. 308x231 22k jpg
数学手抄报比赛优秀作品展--... 640x480 32k jpg
优秀数学手抄报(1) 640x480 112k jpg
08年5月第一届数学手抄报 2048x1536 854k jpg
...学生手抄报 -- 小学数学专业... 383x479 58k jpg
...自然的启示;注:部分同学抄写... 320x241 26k jpg
数学手抄报 1044x728 142k jpg
数学童话主题手抄报图 - 小... 1000x750 98k jpg
作品4 - 数学手抄报展览 - ... 640x853 154k jpg
08年5月第一届数学手抄报 640x480 32k jpg
优秀数学手抄报(7) 900x638 86k jpg
数学手抄报_数学知识2 2048x1536 1252k jpg
"数学手抄报"评比结果 - 学... 900x629 80k jpg
数学手抄报_圆柱和圆锥2 900x630 98k jpg
...柱和圆锥数学手抄报图片 - ... 2048x1536 400k jpg
创意数学手抄报 - 全课程教... 600x450 70k jpg
五年级数学手抄报设计 500x350 72k jpg
《数学手抄报》比赛通报 - ... 500x375 86k jpg
五 5 精美数学手抄报. 600x416 108k jpg

Ⅲ 数学手抄报图片(四年级 简单

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名“大老粗”,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的“从一加到一百”,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的“二次互逆定理”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (几个不同“费马质数”的乘积),k = 0,1,2,…

费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为“代数学基本定理”(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。

这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍“同余”(Congruent)的概念。“二次互逆定理”也在其中。

二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为“谷神星”(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法” (Method of Least Square)。

1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的“微分几何”。

在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

1835年高斯在天文台里设立磁观测站,并且组织“磁协会”发表研究结果,引起世界广大地区对地磁作研究和测量。

高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:“宁可发表少,但发表的东西是成熟的成果。”许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。

早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:

在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了......

1客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
答案:10秒.
2 计算1234+2341+3412+4123=?
答案:11110
3 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同余方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 请问数2206525321能否被7 11 13 整除?
答案:能
7现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚?
答案:一分币51`枚.二分币32枚.5分币17枚.
8 找规律填数:
0 , 3,8,15,24,35,___,63 答案: 48
9 100条直线最多能把平面分为几个部分?
答案:5051
10 A B两人向大洋前进,每人备有12天食物,他们最多探险___天
答案:8天
11 100以内所有能被2或3或5或7整除的自然数个数
答案:78个
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 从1,2,3,......2003,2004这些数中最多可取几个数,让任意两数差不等于9?
答案:1005
14 求360的全部约数个数. 答案: 24
15 停车场上,有24辆车,汽车四轮,摩托车3轮,共86个轮.三轮摩托车____辆. 答案:10辆.
16 约数共有8个的最小自然数为____. 答案:24
17求所有除4余一的两位数和 答案;1210

Ⅳ 一年级数学手抄报 一年级数学手抄报图片简单又漂亮

导读:“手抄报”意思就是用手亲笔抄写的报刊,这是一个锻炼学生自己动手能力的过程。把自己学过的知识,运用到实验中去。自己的报纸自己作主,当一次主编。从学生的眼光、角度看世界。为便于孩子们能完满完成老师布置的一年级数学手抄报作业,我特收集整理一年级数学高清手抄报图片,一年级数学手抄报图片简单又漂亮,希望对您有所帮助。

一年级数学手抄报 一年级数学手抄报图片简单又漂亮

1、先用笔写上一年级数学几个主题文字,右边画上气球写上1234几个数字,左边画上一个蝴蝶结。

2、外边再画上一个圆框,周围画上花边,右边画上一个大大的灯泡,给一年级数学涂上不同的颜色,蝴蝶结涂上黄色。

3、再给数字和气球涂上不同的颜色,给花边周围涂上紫色,灯泡周围涂上绿色,灯泡下边涂上绿色在用笔画出一条条直线就可以了。

Ⅳ 数学手抄报图片简单又漂亮

数学手抄报图片简单又漂亮

数学手抄报图片简单又漂亮,让孩子在这种活动中回归书本,家长要让孩子独立完成手抄报,手抄报的颜色多姿多彩,数学手抄报也要显现出不一样的创意,下面我们一起欣赏数学手抄报图片简单又漂亮。

数学手抄报图片简单又漂亮1

趣味数学知识

在我们的概念中,“1“是一个最小的数字,它是整数数字的开始之数,是万数之首,是的,“1”是万数之首,它的地位也是最特殊的,下面,就和我一起认识这个神奇的数字吧。

一、最小的数字。

古老而庞大的自然数家族,是由全体自然数1、2、3、4、5、6、7、8、9、10……集合在一起组成的。其中最小的是“1”,找不到最大的。如果你有兴趣的话,可以找一找。

二、没有最大的自然数。

也许你认为可以找到一个最大的自然数(n),但是,你立刻就会发现另一个自然数(n+1),它大于n。这就说明在自然数家族中永远找不到最大的自然数。

三、“1”确实是自然数家族中最小的。

自然数是无限的,而“1”是自然数中最小的。有人提出异议,不同意“1”是最小的自然数,说“0”比“1”小,“0”应该是最小的自然数。这是不对的,因为自然数指的.是正整数,“0”是唯一的非正非负的整数,因而“0”不属于自然数家族。“1”确实是自然数家族中最小的。

可别小看了这个最小的“1”,它是自然数的单位,是自然数中的第一代,人类最先认识的是“1”,有了“1”,才能得到1、2、3、4……

给你讲了万数之首“1”的特殊地位,所以,你千万别小看了它哦。

数学手抄报图片简单又漂亮2

数学家简介

C.F. Gauss是 德国着名数学家、物理学家、天文学家、大地测量学家。他有数学王子的美誉,并被誉为历史上最伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名。

华罗庚(1910.11.12—1985.6.12.),世界着名数学家,中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。

陈景润(1933年5月22日~1996年3月19日),汉族,福建福州人。中国着名数学家,厦门大学数学系毕业。1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》(简称“1+2”),成为哥德巴赫猜想研究上的里程碑。而他所发表的成果也被称之为陈氏定理。()这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。1999年,中国发表纪念陈景润的邮票。紫金山天文台将一颗行星命名为“陈景润星”,以此纪念。另有相关影视作品以陈景润为名。

华罗庚(1910年11月12日—1985年6月12日),汉族,江苏金坛金城镇人,是世界着名数学家,是中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。在国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。他为中国数学的发展作出了举世瞩目的贡献。美国着名数学家贝特曼着文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有着名科学院院士”。被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。

Ⅵ 数学手抄报简约一些的,今年高二了,别太幼稚的,谢谢

3800款手抄报电子小报空白模版word格式打包好下载了。
uziyuan.asia/?id=5
复制链接打开直接下载就行
各种类型手抄报都有
楼主也是花了很长时间才整理出来的 喜欢就拿吧

Ⅶ 数学手抄报,必须是图片,A4纸。

数学手抄报,必须是图片

Ⅷ 简单的数学手抄报

人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:

12345679*9=111111111

12345679*18=222222222

12345679*27=333333333

……
有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写:

“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。” 一元钱哪里去了

三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?

分苹果

小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。

小咪的爸爸是怎样做的呢?

小马虎数鸡

春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?

来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“

家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?

http://273165.blog.163.com/还有更多

http://www.diyifanwen.com/sucai/shuxueshouchaobao/163605412.html

Ⅸ 简单又漂亮的数学手抄报图片

数学的知识点是非常之多的,我们要不断学习,数学手抄报也是学习数学的一种方式。下面是我为大家精心整理的数学手抄报,希望对你有帮助!

数学手抄报图片

数学手抄报资料:现代数学教育

现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。

18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。

19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。

大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。

后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。

1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。

在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。

另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代。阿贝尔和伽罗华开创了近代代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的`。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。

上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。

19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的着名设想。实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。

现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。

19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义。因而各种数学能以集合论为基础来讲述。

拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。