㈠ 数学手抄报简单又漂亮
数学手抄报简单又漂亮
如何制作一张精美的数学手抄报呢?我为大家分享的数学手抄报简单又漂亮,希望可以帮到大家!
数学手抄报图片【简单又漂亮】
数学手抄报图片1
一、预习的方法
预习是上课前对即将要上的数学内容进行阅读,了解其梗概,做到心中有数,以便掌握听课的主动权。由于预习是学生独立学习的常尝试,对学习内容是否正确理解,能否把握其重点,关键,洞察到隐含的思想方法等,都能在听课中得到检验,加强或矫正,有利于提高他们的学习能力和养成自学的习惯,所以它是数学学习中的重要一环。
数学具有很强的逻辑性和连贯性,新知识往往是建立在旧知识的基础上。因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。否则由于学生掌握旧知识存在的缺陷,妨碍着有意义学习的进行,从而造成学习的困难。
预习的方法,除了回忆或温习学习新内容所需的旧知识(或预备知识)外,还应该了解其基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等。预习时,一般采用边阅读,边思考,边书写的方式,把内容的要点,层次,联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课效率。在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握。如果时间允许,可以多思考一些问题,钻研得深入一些,甚至可做做练习题或习题;时间不允许,可以少思考一些问题,留给听课去解决的问题就多一些,不必强求一律。
数学手抄报图片2
二、听课的方法
在学校教育的条件下,听课是学生学习数学的主要形式。在教师的指导,启发,帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的.数学知识,否则事倍功半,难以提高效率。所以听课是学好数学的关键。
听课的方法,学生除在预习中明确任务,做到有针对性地解决符合自己实际的问题外,还要集中注意力,把自己的思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习数学思维的方法,如观察,比较,分析,综合,归纳,演绎,一般化,特殊化等,就是如何运用公式,定理,其中也隐含着思想方法。
在听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,鉴别哪些知识已经听懂,哪些还有疑问或有新的问题,并勇于提出自己的看法。如果课内一时不可能解决,就应把疑问或问题记下,留待课后自己去思考或请教老师,并继续专心听老师讲课,切勿因一处没有听懂,思维就停留在这里,而影响后面的听课。一般,听课时要把老师讲课的要点,补充的内容与方法记下(也就是记笔记),以备复习之用。
数学手抄报图片3
三、复习的方法
复习就是把学过的数学知识再进行学习,以达到深入理解,融会贯通,精练概括,牢固掌握的目的。复习应与听课紧密衔接,边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。对学习的内容务求弄懂,切实理解掌握。如果有的问题经过较长时间的思索,还得不到解决,则可与同学讨论或请老师解决。
复习还要在理解教材的基础上,沟通知识间的内在联系,找出其重点,关键,然后提炼概括,组成一个知识系统,从而形成或发展扩大数学认知结构。
复习是对知识进行深化,精练和概括的过程,它需要通过手和脑积极主动地开展活动才能达到,因此,在这个过程中,提供了发展和提高能力的极好机会。数学的复习,不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,怎样应用它等。在复习中,不断对知识本身,或从数学思想方法的角度进行提高与精练,是十分有利于能力的发展与提高的。
四、作业的方法
数学学习往往是通过做作业,以达到对知识的巩固,加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考察出能力水平,所以它对于发现存在的问题,及时采取措施加以解决,有着重要的作用。一般,当做作业感到困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。
通常,数学作业表现为解题,解题要运用所学的知识和方法。因此,在做作业前许要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。
解题,要按一定的程序,步骤进行。首先,要弄清题意,认真读题,仔细理解题意。如哪些是已知的数据,条件,哪些是未知数,结论,题中涉及到哪些运算,它们相互之间是怎样联系的,能否用图表示出来等,要详加推敲,彻底弄清。其次,在弄清题意的基础上,探索解题的途径,找出已知与未知,条件与结论之间的联系。回忆与之有关的知识和方法,学过的例题,解过的题目等,并从形式到内容,从已知数,条件到未知数,结论,考虑能否利用它们的结果或方法,可否引进适当辅助元素后加以利用;是否能找出与该题有关的一个特殊问题或一个一般问题或一个类似问题,考察解决它们对当前问题有什么启发;能否把条件分开,一部分一部分加以考察或变更,再重新组合,以达到所求结果等等。这就是说,在探索解题过程中,需要运用联想,比较,引入辅助元素,类比,特殊化,一般化,分析,综合等一系列方法,并从解题中学会这一系列探索的方法。在探索解题方法中,如何灵活运用知识和方法具有重要意义,也是培养能力的一个极好机会。第三,根据探索得到的解题方案,按照所要求的书写格式和规范,把解题过程叙述出来,并力求简单,明白,完整。最后,还要对解题进行回顾,检查解答是否正确无误,每步推理或运算是否立论有据,答案是否详尽无遗;思考一下解题方法可否改进或有否新的解法,该题结果能否推广等,并小结一下解题的经验,进而发展与完善解题的思想方法,总结出带有规律性的东西来。
㈡ 数学思维导图,怎么画
数学思维导图的构建模式,都是先确定一个中心主题,引出子主题,对子主题再分层次即可。具体操作步骤如下。
1、用最简洁的语言确定要画的数学主题。以“角的度量”为例。如下图所示。
注意事项:
上述思维导图里,由角引出了射线的定义角和射线之间,画一条关系线,方便我们把知识点串联起来即可。
㈢ 数学手抄报图片简单又漂亮 全国最漂亮数学手抄报图片
导读:数学可以说是这世界上最难攻克的问题,想必很多人的学生生涯都有体会过上数学课打瞌睡的时候吧。数学学不懂那就是天文数字,学懂了那就是加减乘除,为了让大家更喜爱数学,一起去绘制关于数学的手抄报吧,那么数学手抄报图片简单又漂亮的去哪找呢?以下是我带来的全国最漂亮数学手抄报图片,快点来看看吧。
数学手抄报图片简单又漂亮 全国最漂亮数学手抄报图片
数学是什么
数学(mathematics或maths,其英文来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
学数学的好处
1、崇拜与尊重
一个据说难以被证伪的观点:认真学习的过程本身就值得被人尊重。而尊重需求位于马斯洛需求金字塔第二梯队,可见认真学习是每个人都应该追求的高层次需求。
同时基于经验证据,数学成绩好的同学也更容易受到身边同学的崇拜和追捧。
2、非线性思维能力
高等数学最重要的一个特征就是高度抽象化。一道问题可以没有具体情境,没有数字,甚至没有文字,完全由字母构成题干。
这锻炼的是学生寻求解决问题突破口的能力。基于公理、定理和经验,寻找题目中可能出现的漏洞,作为进一步推导的前提。
3、逻辑思维能力
有了突破口,就是沿着自己给出的前提和假设,一步步地推导。当然,如何前提和假设是错的,那么计算出来的结果也将是错的,但是严格按照数学推断能保证过程的条理性和结果的逻辑性。
数学家的故事
伽利略质疑权威
伽利略17岁那年,考进了比萨大学医科专业。
有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。”
比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”
“我是根据古希腊着名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。
伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。
后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。
陈景润攻克歌德巴赫猜想
陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了着名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。
㈣ 数学思维导图怎么画
对于数学思维导图怎么画,这个问题呢,其实怎么画思维导图基本都是一个套路,新建一个中心主题,确定子主题,再次对子主题分层次,基本上画思维导图并没有什么难度,除了格式细节的考究。
讨论到这个主题,我觉得最重要的就是解决如何顺着思维导图的结构来把数学知识点梳理透彻,这才是重中之重。否则思维导图只是一个空壳,并起不了任何的作用。
我们以一个知识点(数学实例:实数)来举例,否则有点跟大白话一样。
1.确定中心主题:即我们想要梳理的数学只是主题。
2.我们先不看图,自己试着用脑瓜子想,先把这些问题想明白了,再操作思维导图。想清楚实数分为哪几类?即包括什么?
实数分为有理数和无理数
大致制作一个数学的思维导图也就是这样,主要是数学的知识点要梳理清楚,一般的数学课本都会有概念性的分析,按照那个归类即可。如何学会画数学思维导图,技巧占小半,头脑占大半,重在概念性的梳理得当,知识点清楚了,数学思维导图也就不难画了,哈哈~~
㈤ 数学手抄报图片简单又漂亮
数学手抄报图片简单又漂亮
数学手抄报图片简单又漂亮,让孩子在这种活动中回归书本,家长要让孩子独立完成手抄报,手抄报的颜色多姿多彩,数学手抄报也要显现出不一样的创意,下面我们一起欣赏数学手抄报图片简单又漂亮。
数学手抄报图片简单又漂亮1
趣味数学知识
在我们的概念中,“1“是一个最小的数字,它是整数数字的开始之数,是万数之首,是的,“1”是万数之首,它的地位也是最特殊的,下面,就和我一起认识这个神奇的数字吧。
一、最小的数字。
古老而庞大的自然数家族,是由全体自然数1、2、3、4、5、6、7、8、9、10……集合在一起组成的。其中最小的是“1”,找不到最大的。如果你有兴趣的话,可以找一找。
二、没有最大的自然数。
也许你认为可以找到一个最大的自然数(n),但是,你立刻就会发现另一个自然数(n+1),它大于n。这就说明在自然数家族中永远找不到最大的自然数。
三、“1”确实是自然数家族中最小的。
自然数是无限的,而“1”是自然数中最小的。有人提出异议,不同意“1”是最小的自然数,说“0”比“1”小,“0”应该是最小的自然数。这是不对的,因为自然数指的.是正整数,“0”是唯一的非正非负的整数,因而“0”不属于自然数家族。“1”确实是自然数家族中最小的。
可别小看了这个最小的“1”,它是自然数的单位,是自然数中的第一代,人类最先认识的是“1”,有了“1”,才能得到1、2、3、4……
给你讲了万数之首“1”的特殊地位,所以,你千万别小看了它哦。
数学手抄报图片简单又漂亮2
数学家简介
C.F. Gauss是 德国着名数学家、物理学家、天文学家、大地测量学家。他有数学王子的美誉,并被誉为历史上最伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名。
华罗庚(1910.11.12—1985.6.12.),世界着名数学家,中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。
陈景润(1933年5月22日~1996年3月19日),汉族,福建福州人。中国着名数学家,厦门大学数学系毕业。1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》(简称“1+2”),成为哥德巴赫猜想研究上的里程碑。而他所发表的成果也被称之为陈氏定理。()这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。1999年,中国发表纪念陈景润的邮票。紫金山天文台将一颗行星命名为“陈景润星”,以此纪念。另有相关影视作品以陈景润为名。
华罗庚(1910年11月12日—1985年6月12日),汉族,江苏金坛金城镇人,是世界着名数学家,是中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。在国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。他为中国数学的发展作出了举世瞩目的贡献。美国着名数学家贝特曼着文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有着名科学院院士”。被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。
㈥ 三年级下册数学手抄报图片间单的字尽量少一些
三年级下册数学手抄报图片简单的字尽量少一些
㈦ 简单的数学好玩手抄报有哪些
简单好看的数学手抄报图片-有趣的数学
㈧ 数学手抄报怎么画
先画出报头文字,接着画几个不同形状的小边框,补充一些小细节,给报头涂上颜色,草地涂上绿色,给边框涂上各种颜色,最后画上文字栏,简单的手抄报就画好啦,具体操作步骤如下:
1、先画出报头文字,然后在左边画一个玩具熊的边框,边框的右下角画两本书点缀一下。
关于数学手抄报的一些小技巧
1、内容方面
内容可以分为概述,具体内容,图片,花边设计按需要改进。
手抄报要细致,可以用荧光笔,细的那种,和中性笔一样细的那种,大标题则可用粗一点的,颜色的选取要大胆,显眼,如果喜欢黑色背景的话,可以直接买黑色的卡纸,大小颜色都不错。厚度也不错,比A4那类的打印纸要好点。
2、创意方面
要有创意,可分为这样的几个模块,首先写学习数学的精神性东西,比如态度、方法等,然后写具体的东西,数学的知识,还可以是一套题,说出自己的方法和感触。
㈨ 生活中关于数学的图片
生活中的数学图案
生活中的图案很多,比如轴对称,中心对称的。本章会从轴对称和中心对称两方面来介绍。
生活中的轴对称
我们生活在一个充满对称的世界之中,对称给人以平衡与和谐的美感。请欣赏生活中的轴对称图片。
㈩ 简单又漂亮的数学手抄报图片
简单又漂亮的数学手抄报图片
数学的知识点是非常之多的,我们要不断学习,数学手抄报也是学习数学的一种方式。下面是我为大家精心整理的数学手抄报,希望对你有帮助!
数学手抄报图片
数学手抄报资料:现代数学教育
现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。
18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。
19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。
大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。
后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的'局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。
1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。
在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。
另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代。阿贝尔和伽罗华开创了近代代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。
上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。
19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的着名设想。实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。
现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。
19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义。因而各种数学能以集合论为基础来讲述。
拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。
;